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In Bayesian decision theory, knowledge about the probabilities of possible outcomes is captured by a prior distribution and a likelihood
function. The prior reflects past knowledge and the likelihood summarizes current sensory information. The two combined (integrated)
form a posterior distribution that allows estimation of the probability of different possible outcomes. In this study, we investigated the
neural mechanisms underlying Bayesian integration using a novel lottery decision task in which both prior knowledge and likelihood
information about reward probability were systematically manipulated on a trial-by-trial basis. Consistent with Bayesian integration, as
sample size increased, subjects tended to weigh likelihood information more compared with prior information. Using fMRI in humans,
we found that the medial prefrontal cortex (mPFC) correlated with the mean of the posterior distribution, a statistic that reflects the
integration of prior knowledge and likelihood of reward probability. Subsequent analysis revealed that both prior and likelihood infor-
mation were represented in mPFC and that the neural representations of prior and likelihood in mPFC reflected changes in the behav-
iorally estimated weights assigned to these different sources of information in response to changes in the environment. Together, these
results establish the role of mPFC in prior-likelihood integration and highlight its involvement in representing and integrating these
distinct sources of information.
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Introduction
In making decisions, we balance the desirability of possible out-
comes against the feasibility of getting any one of them (Gilboa,
2010). Decision can be modeled as a choice among lotteries where
a lottery is a list of mutually exclusive outcomes each paired with a
probability of occurrence: the lottery A �0.5, $100; 0.5, $0� offers a
50:50 chance of $100 or $0. The lottery B (1, $40) offers the certainty
of $40. The decision maker must choose A or B.

In most everyday tasks, we do not have complete information
about probabilities and must estimate them to make decisions.
There are two potential sources of information that we can rely
on to perform such tasks: one source is our past experience (prior
knowledge) and the other is current sensory information (likeli-
hood). How humans weigh and integrate these two sources of
information has been extensively studied in psychology (Kahne-
man et al., 1982), experimental and behavioral economics (Cam-

erer, 1987), finance (Kluger and Wyatt, 2004), and perception
and action (Knill and Richards, 1996; Körding and Wolpert,
2006).

Previous studies on reward-based learning revealed how mid-
brain dopamine systems and associated frontostriatal circuits
form expectations about future outcomes through experience
(Schultz et al., 1997; O’Doherty et al., 2003; Fiorillo et al., 2003;
Daw et al., 2006). Recently, decision-making studies have begun
to reveal how prior expectations, established through the presen-
tation of cues before a decision, affects choice and neural compu-
tations in frontoparietal and sensory systems (Forstmann et al.,
2010; Li et al., 2011; Rahnev et al., 2011; Mulder et al., 2012; Kok
et al., 2013). Vilares et al. (2012) investigated the neural represen-
tations of uncertainty associated with prior and likelihood infor-
mation and found separate systems for representing these sources
of uncertainty, with prior uncertainty represented in the orbito-
frontal cortex and likelihood uncertainty in the occipital cortex.
In a study that examined the encoding of event probability,
d’Acremont et al. (2013) found separate frontoparietal networks
for representing event frequency and posterior event probability.

Despite these recent advances, the neurobiological basis of the
integration of prior and likelihood information, particularly in
the domain of reward probability, remains largely unknown. It is
not clear whether the systems that represent prior and likelihood
information about reward probability are distinct from the sys-
tems that integrate them. It is little known whether the neural
systems involved in prior-likelihood integration overlap with
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those involved in the computation of subjective value, particu-
larly the medial prefrontal cortex (mPFC) and the ventral stria-
tum, during value-based decision making (Platt and Huettel,
2008; Kable and Glimcher, 2009; Padoa-Schioppa, 2011; Bartra et
al., 2013; Clithero and Rangel, 2013). To address these questions,
we designed a novel lottery decision task that allowed us to ex-
amine the neural representations of prior and likelihood and the
neural mechanisms involved in integrating them. We developed
an ideal decision maker model to evaluate how subjects weigh
these sources of information, how close they are to ideal perfor-
mance, and how the weighting might change as we systematically
manipulated both prior and likelihood information.

Materials and Methods
Overview of Bayesian integration
Bayesian decision theory provides a normative framework for modeling
how people make decisions. Suppose that a subject is presented with a
visual stimulus that signals a probability � of obtaining a monetary re-
ward $x or nothing. The stimulus and the monetary value form a lottery
��, $x�. The subject does not know the true value of � and therefore has to
estimate it so that s/he can make proper decisions about ��, $x�. What
should the subjects do to estimate �?

In the Bayesian framework, knowledge about � has two sources: a prior
distribution ���� on � based on past experience and a likelihood func-
tion L(�) based on sensory data about the true value of � that is currently
available to the decision maker. The product of prior and likelihood—
after normalization—is the posterior distribution, obtained as follows:

���� � � C����� � L�� � (1)

where C�� is a normalization constant chosen so that the area under the
posterior ����� is 1. According to Bayesian decision theory (Berger,
1985; O’Hagan, Forster and Kendall, 2004; Zhang and Maloney, 2012),
the posterior distribution ����� captures all the information that the
subject has about �.

Prior distribution. We chose priors that were beta distributions
(O’Hagan et al., 2004)

��� � � C��s0�1�� � f0 (2)

where C� is the normalization constant and s0, f0 are the two free param-
eters. Here, we use a nonstandard parameterization of the beta distribu-
tion for convenience. The typical parameters �, � are related to ours by
� � s0 � 1, � � f0 � 1.

In Figure 1A, we illustrate the two prior distributions on � that we used
in the experiment. The blue curve is the probability density function for
one hypothetical prior ���� for �. With this prior, � is less likely to be
�0.5 and more likely to be in the range of 0.1 to 0.4. In contrast, the prior
���� in red gives more weight to values of � �0.5. One distribution
(blue) had a mean of 0.3 �s0 � 2, f0 � 6� and the other (red) had a mean
of 0.8 �s0 � 7, f0 � 1�. In our experiment, each prior distribution was
paired with a visual stimulus (a white-on-black icon, shown above each
distribution in Fig. 1A). We refer to the stimulus as an “icon” or “symbol”
interchangeably throughout the text. Subjects first had to learn these two
prior distributions (see Session 1 in “Procedure”) and their associated
icons before engaging in a task (see Session 2 in “Procedure”) that re-
quired the integration of prior and likelihood information.

Likelihood function. In the integration task (see Session 2 in “Proce-
dure”), on each trial, subjects were presented with both prior and likeli-
hood information about �. In Figure 1B, we give an example on how
likelihood information was generated. Suppose that, on a given trial, � is
sampled from the prior distribution in blue and � � 2/3. Likelihood
information here is a sample from a binomial distribution with param-
eters ��, n� where n is the sample size. In Figure 1B, we show three
samples that differ in sample size. Each sample consists of red and white
dots that respectively represent winning a reward or nothing.

The likelihood function for each sample is a beta distribution
(O’Hagan et al., 2004) calculated as follows:

L�� � � CL�s�1 � � � f (3)

where s is the number of successes (winning a reward of $x) in the sample,
f, the number of failures (winning nothing), and CLa normalization con-
stant chosen so that the area under the likelihood function is 1. The
sample size is n � s � f.

Posterior distribution. The posterior distribution is the product of
Equations 2 and 3 and is also a beta distribution, as follows:

���� � � C���
s�s0 �1 � � � f�f0 (4)

where C�� is a normalization constant chosen so that the area under the
likelihood function is 1. The beta distribution is conjugate to the bino-
mial (O’Hagan et al., 2004) leading to the simple relation between prior,
likelihood and posterior that we find. Figure 1C provides a graphical
example of a prior distribution (blue curve in the left figure), three alter-
native likelihood functions (gray curves in the left figure), and the result-
ing posterior functions (red curves on the right figure). Three possible
samples based on sampling from ��, n� are shown as examples in Figure
1B for how sampled data might look like with different sample sizes
n � �3, 15, 75	 used in the experiment. The frequency of reward
(s/n) in each sample is the proportion of red dots. In Figure 1C, we
plot the likelihood function (gray curve) for each of the sample shown
in Figure 1B.

For convenience, in this example, we set the frequency of reward to be
2/3 in all 3 samples. The peak of each likelihood function is therefore at
2/3 and is the same across these 3 samples differing in sample size. How-
ever, the variances of the likelihood functions are different. As a result,
when an ideal decision maker combines likelihood (gray curve) with the
prior (blue curve) as in Equation 4 to arrive at the posterior distribution
on � (red curve on the right figure in Fig. 1C), s/he gets different posterior
distributions on �.

For any given relative frequency of reward in the sample, the posterior
distribution is closer to the prior distribution when the sample size is
smaller, and is closer to the likelihood function when the sample size
becomes bigger. Put differently, when the sample size is smaller, the ideal
subject would weight prior information relatively more compared with
likelihood information. However, as sample size increases, likelihood
information is weighted relatively more.

Finally, the expected value of the lottery ��, $x� with respect to the
posterior is:

EV � ��x���� �d� � x������ �d� � x		� (5)

where 	�� is the mean of the posterior distribution. The mean of the poste-
rior beta distribution is 	�� � �s � s0 � 1�/�s � s0 � f � f0 � 2�, which
we take to be the estimate of � derived from the posterior. A common
alternative to the mean is the mode of the posterior, the maximum a
posteriori (MAP) estimator. For the beta distributions considered, the
mean and MAP are very close and use of either would lead to the same
conclusions here.

Procedure
We designed the experiment to find out how people combine informa-
tion about prior and likelihood to estimate reward probability and to
determine the neural systems involved in performing such computa-
tions. There were two sessions in the experiment. The first session was
conducted in a behavioral testing room. The second session was con-
ducted inside an MRI scanner and was the main session of interest. The
tasks were programmed using the Psychophysics Toolbox in MATLAB
(Brainard, 1997; Pelli, 1997).

Session 1 (behavioral): learning prior distributions. The goal of the ses-
sion was to familiarize the subject with the reward probabilities associ-
ated with the two different priors, blue and red, in Figure 1A. There were
two different visual stimuli shown as white-on-black icons in Figure 1A,
each placed above the peak of the prior it represented.

The blue prior led, on average, to a 30% chance of reward, whereas the
red prior had an 80% average chance of reward. Before the session, the
subjects did not know the prior probability distributions associated with
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the two icons. They had to learn each probability distribution through
feedback in this session. The session consisted of eight blocks of 30 trials
each. Within a block, only one of the two stimuli was presented. Each
stimulus was allocated with equal number of blocks with the order ran-
domized differently for each subject.

On each trial, the subjects were first presented with an icon designating
a prior distribution and a probability of reward � was drawn from it. Only
the icon was presented; no other information about the prior probability
distribution was presented. Therefore, on each trial, the stimulus repre-
sented a lottery ��, $x� where $x was the reward. Notably, � would vary
from trial to trial because it was sampled from a prior distribution. The
gain ($x) associated with the lottery was fixed at 10 points (100 points �
1 National Taiwan Dollar (NTD); 1 USD � 30 NTD). When the visual

icon was presented, the subject’s task was to estimate the probability of
reward in the current trial. The subject was instructed to enter his/her
estimate from 0 to 100 in steps of 1 with key presses. For example, if the
subject wished to enter 56, s/he pressed key 5 and then key 6 before
hitting the return key to solidify his/her answer.

Critically, to motivate the subjects to learn the probability distribu-
tions, we implemented an incentive compatible procedure. On each trial,
subjects received an extra monetary gain or loss depending on how close
his/her estimate in the current trial was to the reward probability sampled
from the distribution in that trial. Before the session, subjects received
detailed instruction on this design: s/he would receive 100 points if the
difference was within 5%, 50 points if the difference was between 5% and
15%, 0 if the difference was �15% but smaller than 30%, and would lose
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Figure 1. Overview of Bayesian integration and experimental design. A, Prior distributions. Two probability density functions on a parameter � that takes on the value between 0 and 1. In this
study, � was the reward probability associated with a lottery option, termed the “symbol lottery.” There were two density functions, each represented by a white-on-black icon shown above the peak
of each distribution. These density functions served as prior distributions on �. Subjects had to first learn each density function in the behavioral session (Session 1). B, Generating current sensory
information (likelihood). In the integration task (Session 2), on each trial, a sample was drawn from the prior distribution corresponding to the icon displayed to determine the reward probability
of the symbol lottery (�). In this example, we assume that �� 2/3 for convenience but, of course, it may take on any value between 0 and 1. The subjects did not know this value and had to estimate
it. One source of information was the prior experience s/he had with the icon in the previous behavioral session. The other source was current sensory information about the true value of �, which
was generated by sampling with replacement based on �. The sample was presented as randomly distributed dots (red and white dots that indicated reward and no reward respectively). There were
three possible sample sizes (three dots, 15 dots, 75 dots) implemented in this study. C, Bayesian integration of prior and likelihood information. To optimally combine prior and likelihood
information, an ideal Bayesian decision maker multiplies the prior distribution, ����, which represents prior beliefs, and the likelihood function, L���, which represents current sensory
information about �, resulting in the posterior distribution �����. D, Trial sequence in the fMRI session (Session 2). Information about the symbol lottery was presented for 3 s and was followed
by a variable 1–7 s interstimulus interval. After the interstimulus interval, the choice screen appeared. Information about the reward probability associated with the alternative lottery was revealed
explicitly in numeric form and subjects had up to 2 s to make a choice between the symbol lottery and the alternative lottery with a button press.
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50 points if the difference was �30%. Note that, to emphasize learning of
the prior distribution, we purposefully made the consequence (extra gain
or loss) of the accuracy of probability estimate much bigger than the size
of the gain the subjects would receive based on the current lottery. After
entering an estimate, the subjects received feedback on the actual reward
probability � of the current trial, the amount of bonus based on deviation
of his/her probability estimate from �, and whether they won a reward or
not based on executing the lottery ��, $x�.

Session 2 (fMRI): Integrating prior and likelihood. The goals of the
session were to investigate how subjects integrated prior knowledge and
likelihood and to determine the neural mechanisms underlying integra-
tion using fMRI.

The trial sequence is illustrated in Figure 1D. On each trial, the subjects
were asked to choose between two lotteries, referred to as the “symbol
lottery” and the “alternative lottery.” The two lotteries differed only in
reward probability. Reward magnitude was the same and was fixed
throughout the experiment. During each trial, information about the
symbol lottery was presented first. The subjects were presented with one
of the two visual icons from the previous session, signifying which before
use. As in Session 1, the reward probability � associated with the symbol
lottery of the current trial was drawn from the prior distribution associ-
ated with the icon presented in that trial. Subjects did not know � because
it was not explicitly revealed to him/her.

What was different from Session 1 is that, in this session, the subjects
were given an additional piece of information about �. The piece of this
new information came from sampling with replacement from the cur-
rent sampled reward probability—the sample served as an additional
source of information about the reward probability on the current trial.

As described in “Overview of Bayesian integration,” the sample is
drawn from a binomial distribution with two parameters ��, n� where �
is the reward probability associated with the symbol lottery on the cur-
rent trial and n is the sample size. Figure 1B shows 3 samples of different
sizes implemented in the experiment (n � �3, 15, 75	). In the examples
shown in Figure 1B, the reward probability � sampled from the prior
distribution is 2/3. The colored dots represented the outcomes sampled
from �. The sampled results (red and white dots) were presented along
with the icon designating the prior for 3 s. The location of the prior icon
and sampled results (left or right) was randomized across trials.

Up to this point, the subjects had obtained information about only one
of the lottery options. Information about the remaining option (termed
the alternative lottery) was revealed after a variable interstimulus interval
(1–7 s, uniform distribution) after the presentation of the prior icon and
the sampling results. The reward probability associated with the alterna-
tive lottery (�alt) was explicitly specified in numeric form. No integration
was needed to estimate �alt. On each trial, �alt was drawn randomly from
the set [0.01, 0.2, 0.4, 0.6, 0.8, 0.99]. At this point, the subjects were in-
structed to choose between the symbol lottery and the alternative lottery
within 2 s. No feedback was given to the subjects after their choice so that
subjects could not update knowledge about the prior distributions
through feedback.

Subjects were asked to indicate his/her preference level for the symbol
lottery with a four-point scale (strongly yes, yes, no, strongly no). “Strong
yes” or “yes” indicated that subjects chose the symbol lottery, whereas
“strong no” or “no” indicated that s/he chose the alternative lottery. To
exclude motor-related confounds that was not the interest of this study,
the button mapping was balanced (left to right; right to left) across sub-
jects. In the left-to-right mapping, the left middle finger, left index finger,
right index finger, right middle finger indicated “strong yes,” “yes,” “no,”
and “strong no,” respectively. The reverse was true for the right-to-left
mapping. After the subjects made a response, a brief feedback (0.5 s) on
the indicated preference level was given to the subjects to confirm their
choice. There were 5 blocks of trials, each having 30 trials. We imple-
mented a 2 (prior) by 3 (likelihood sample size) factorial design. Each
combination was presented on 25 trials.

Subjects. Thirty-two subjects participated in the experiment (16 males;
mean age, 25.4 years; age range, 19 –33) and completed two sessions in
2 d. All participants had no history of psychiatric or neurological disor-
ders. The study was approved by the Institutional Review Board at the
Taipei Veterans General Hospital. Before the experiment, all subjects

gave written consent to participate in the study. Subjects were paid 600
NTD for their participation and monetary bonus (average: 332 NTD)
obtained throughout the experiment. All subjects were paid after they
completed the experiment.

Behavioral analysis 1: logistic regression analysis on choice and model
comparison. The goal of this analysis was to compare how well different
models described subjects’ choices. In a logistic regression analysis, the
difference in reward probability between symbol lottery (�sym) and the
alternative lottery (�alt), �sym � �alt, was implemented as the regressor. A
choice of the symbol lottery was coded as 1, otherwise 0.

There were three models, the prior model, the likelihood model, and
the posterior model. In the prior model, the value of �sym was the mean
of the prior distribution on reward probability. In the likelihood model,
the value of �sym was the mean of the likelihood function on reward
probability. In the posterior model, the value of �sym was the mean of the
posterior distribution on reward probability. For each subject, we esti-
mated each model separately and computed its Bayesian information
criterion (BIC). We then performed three pairwise model comparisons
(posterior compared with prior, posterior compared with likelihood,
likelihood compared with prior) based on BIC.

Let model A and model B denote the pair of models being compared.
For each subject, if the BIC of model A is smaller than that of model B,
which indicates that model A is better than B, assign a value of 1 to that
subject; otherwise, assign 0 to the subject. As a result, the comparison of
BIC between the two models becomes a binomial random variable (1 if
model A is better, 0 if model B is better). We then performed a sign test to
test the null hypothesis that the two models do equally well in describing
the data. That is, the probability that A is better is equal to the probability
that B is better: H0 : p(A is better) � p(B is better) � 0.5.

Behavioral analysis 2: logistic regression analysis on choice and the use of
prior and likelihood information. Here, we performed a logistic regression
analysis on choice to understand how subjects used information about
prior and likelihood. A choice of the symbol lottery was coded as 1,
whereas a choice of the alternative lottery was coded as 0. The analysis
looked at all trials and implemented the following regressors: (R1) the
mean of the prior distribution (	�), (R2) the mean of the likelihood
function (	L), the frequency of reward in the current sensory informa-
tion indicated by the fraction of red dots), (R3) the standard deviation
(SD) of the likelihood function (
L), (R4) the interaction between R1 and
R3 (	� � 
L), (R5) the interaction between R2 and R3 (	L � 
L), and
(R6) the reward probability of the alternative lottery (�alt). We estimated
this model for each subject separately.

Behavioral analysis 3: ideal decision maker analysis. The goal of this
analysis was to evaluate how close subjects were to an ideal decision
maker that optimally integrates prior and likelihood information. The
critical comparison we made between actual performance and ideal per-
formance was on the weight w� assigned to prior information 	� relative
to the weight wL assigned to likelihood information 	L. We computed an
index RW � w�/wL and referred to it as the relative weight (RW ).

We compared the actual RW with the ideal RW separately for each
sample-size condition. If subjects combined prior and likelihood as pre-
dicted by the Bayesian model, then, as sample size increases, RW should
decrease.

To estimate RW for each subject and each sample-size condition sep-
arately, we performed a logistic regression with the following regressors:
(R1) the mean of the prior distribution (	�), (R2) the mean of likelihood
function (	L), the frequency of reward in the current sensory informa-
tion indicated by the fraction of red dots), (R3) the SD of the likelihood
function (
L), and (R4) the reward probability of the alternative lottery
(�alt). RW was estimated by the � estimate of R1 divided by the � estimate
of R2.

To estimate the RW of an ideal subject, we simulated 10,000 experi-
ments performed by an ideal decision maker. In each experiment, the
ideal decision maker faced trials similar to those faced by the subjects.
Based on Bayesian integration, we simulated what the ideal decision
maker would choose. On each trial, we computed the posterior distribu-
tion on reward probability of the symbol lottery based on prior and
likelihood information (Eq. 4). We then sampled from the posterior
distribution to determine the ideal subject’s estimate on the reward prob-
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ability of the symbol lottery �̂sym in the current trial. By treating �sym as a
random variable, we effectively added noise to the probabilistic inference
process and the posterior distribution. The ideal subject would choose
the symbol lottery if �̂sym � �alt. Otherwise, the alternative lottery would
be chosen. We also repeated all analyses using the mean of the posterior
distribution as the subject’s estimate instead of a sample from the poste-
rior. This change in simulation did not affect our conclusions.

Second, based on simulated choice, we then estimated the RW using
the same logistic regression model described above. We estimated RW
separately for each sample-size condition. Finally, we computed the
mean of the simulated RW, also for each sample-size condition sepa-
rately, across the 10,000 simulated experiments and used it to define the
RW of an ideal subject.

fMRI data acquisition. Imaging data were collected with a 3T MRI
whole-body scanner (Siemens) equipped with a 12-channel head array
coil. T2*-weighted functional images were collected using an EPI se-
quence (TR � 2 s, TE � 30 ms, 33 oblique slices acquired in ascending
interleaved order, 3.4 
 3.4 
 3.4 mm isotropic voxel, 64 
 64 matrix in
a 220 mm field of view, flip angle 90°). Each subject completed five runs
in the scanning experimental session. There were 30 trials in each run.
Each run consisted of 270 images. T1-weighted anatomical images were
collected after the functional scans using an MPRAGE sequence (TR �
2.53 s, TE � 3.03 ms, flip angle � 7°, 192 sagittal slices, 1 
 1 
 1 mm
isotropic voxel, 224 
 256 matrix in a 256 mm field of view).

fMRI preprocessing. The following preprocessing steps were applied
using FMRIB’s Software Library (FSL) (Smith et al., 2004). First, motion
correction was applied using MCFLIRT to remove the effect of head
motion during each run (Jenkinson et al., 2002). Second, we applied
spatial smoothing using a Gaussian kernel of FWHM 8 mm. Third, a
high-pass temporal filtering was applied using Gaussian-weighted least
square straight line fitting with 
 � 50s. Fourth, registration was per-
formed using a two-step procedure. First, the unsmoothed EPI image
that was the midpoint of the scan was used to estimate the transformation
matrix (seven-parameter affine transformations) from EPI images to the
subject’s high-resolution T1-weighted structural image with nonbrain
structures removed using FSL’s BET (Brain Extraction Tool). Second, we
estimated the transformation matrix (12-parameter affine transforma-
tion) from the high-resolution T1-weighted structural image with non-
brain structures removed to the standard MNI template brain.

General linear models of BOLD response
We estimated the following three general linear models (GLMs) of the
blood oxygen-level dependent (BOLD) signals using FSL’s FEAT module
(fMRI Expert Analysis Tool). Time series were prewhitened with local
autocorrelation correction (Woolrich et al., 2001). The GLM analysis was
then performed in three steps (Beckmann et al., 2003). First, first-level
FEAT analyses were performed for each run of each subject. Second, a
second-level fixed-effect (FE) analysis was performed for each subject
that combined the first-level FEAT results from different runs using the
summary statistics approach (Beckmann et al., 2003). That is, the param-
eter estimate (�) of each contrast specified in the first-level analysis was
treated as data for the FE analysis. Finally, a third-level mixed-effect
analysis using FSL’s FLAME module (FMRIB’s Local Analysis of Mixed
Effects) was performed across subjects by taking the FE results from the
previous level and treating subjects as a random effect (Woolrich et al.,
2004).

All reported whole-brain results were corrected for multiple compar-
isons (familywise error rate p � 0.05) using Gaussian random field the-
ory. This was accomplished by first defining clusters of activation based
on a z statistic (the cluster-forming threshold). We then estimated a
familywise error-corrected p-value of each cluster based on its size using
Gaussian random field theory (Worsley et al., 1992; Forman et al., 1995).

We denote the mean of the posterior distribution on reward probabil-
ity associated with the symbol lottery as 	��, the SD of the posterior
distribution as 
��, the mean of the prior distribution on reward proba-
bility as 	�, the frequency of reward indicated by current sensory infor-
mation (fraction of red dots) that would correspond to the mean of the
likelihood function as 	L, the SD of the likelihood function as 
L, the

reward probability of the chosen lottery as �C, and the reward probability
of the nonchosen lottery as �NC.

GLM-1. The purpose of this GLM was to identify regions in which
activity is correlated with information about the posterior distribution
on reward probability associated with the symbol lottery when it was
presented. The model had the following regressors: (R1) an indicator
function for the presentation of the symbol lottery with a length of 3 s
when sample size n � 3, (R2) R1 multiplied by 	�� when sample size n �
3, (R3) R1 multiplied by 
�� when sample size n � 3, (R4) an indicator
function for the presentation of the symbol lottery with a length of 3 s
when sample size n � 15, (R5) R4 multiplied by 	�� when sample size n �
15, (R6) R4 multiplied by 
�� when sample size n � 15, (R7) an indicator
function for the presentation of the symbol lottery with a length of 3 s
when sample size n � 75, (R8) R7 multiplied by 	�� when sample size n �
75, (R9) R7 multiplied by 
�� when sample size n � 75, (R10) an indica-
tor function for the choice period with a duration of subject’s reaction
time, (R11) R10 multiplied by the rating the subjects gave to the symbol
lottery, (R12) R10 multiplied by �C � �NC.

GLM-2. The purpose of this GLM was to identify regions that correlate
with information about the prior distribution and the likelihood
function of reward probability associated with the symbol lottery at
its presentation. The model had the following regressors: (R1) an
indicator function for the presentation of the symbol lottery with a
length of 3 s, (R2) R1 multiplied by 	�, (R3) R1 multiplied by 	L

orthogonalized with respect to 	�, (R4) R1 multiplied by 
L, (R5) R1
multiplied by ⎪	� � 	L⎪, (R6) R1 multiplied by the size of the
sample, (R7) an indicator function for the choice period with a duration of
subject’s reaction time, (R8) R7 multiplied by the rating the subjects gave to
the symbol lottery, (R9) R7 multiplied by �C � �NC.

Because 	L is sampled from the reward probability that was obtained
by sampling from the prior distribution, 	L and 	� are expected to
be correlated with the correlation increasing as sample size increases. The
correlation across all trials was 0.78 (averaged across subjects). This high
correlation was primarily driven by trials where sample size was 15
(0.8927) and 75 (0.8370). When sample size was 3, the mean correlation
was 0.02. To avoid multicollinearity issues, we chose to orthogonalize 	L

with respect to 	�. Therefore, signals with variance that is captured by the
shared variance component between 	� and 	L will be attributed to the
	� regressor, whereas signals that are unique to 	L (deviation of likeli-
hood from prior) will be attributed to the 	L regressor.

GLM-3. This GLM was identical to GLM-2 except that we added two
additional regressors, one for the interaction between 	L and 
L (	L

� 
L), and one for the interaction between 	� and 
L (	� � 
L). To
avoid multicollinearity issues due to their correlation with 
L, these re-
gressors were orthogonalized with respect to 
L. We also analyzed the
data without applying orthogonalization and did not find that orthogo-
nalization significantly altered the results.

All regressors in the GLMs were convolved with a canonical gamma
hemodynamic response function. We implemented temporal derivatives
of each regressor in each model as the regressors of no interest. This
implementation often serves as an alternative to slice-timing correction
and is useful to model the nonlinear neural and vascular effects on the
timing shift of BOLD response (Henson et al., 1999; Calhoun et al.,
2004). We also included the estimated motion parameters as regressors
of no interest.

Construction of independent, unbiased regions of interest
Following Esterman et al. (2010) and Litt et al. (2011), we created an
independent, unbiased region of interest (ROI) for each subject sepa-
rately. For each subject, we first performed a mixed-effect analysis on the
contrast of interest using all other subjects’ data. As a result, we obtained
a statistical parametric map (SPM) for the contrast of interest. The SPM
was created for each subject separately and was independent of each
subject’s data. We then performed the standard cluster-based threshold-
ing to correct for multiple comparisons using Gaussian random field
theory. The voxel with the maximum z statistic within the cluster of
interest was identified and a sphere mask centered at the peak voxel was
then created (radius � 6 mm).
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Time-series analysis
We performed three time-series analyses on the independent ROIs that
we identified using a method similar to that of Boorman et al. (2013). For
each subject, we extracted the BOLD time series from an ROI. For each
analysis, a generalized linear regression was performed on the BOLD
time-series data.

Analysis 1. We modeled the 14 s after the onset of symbol-lottery
presentation. At each time point after (and including) the onset of the
presentation, we implemented an indicator regressor that took the value
of 1 and a parametric regressor that took the value of 	��. The regression
thus gave us a time series of � coefficient of 	��. At each time point, we
then transformed the � coefficient to a z-statistic and plotted it in Figure
3B as a function of sample size (color coded).

Analysis 2. We modeled the 14 s after the onset of symbol-lottery
presentation. At each time point after (and including) the onset of the
presentation, we implemented an indicator regressor that took the value
of 1, and two parametric regressors: one regressor took the value of 	�,
whereas the other took the value of 	L orthogonalized with respect to 	�.
For 	� (prior) and 	L (likelihood) separately, we computed the
z-statistic of the estimated � coefficient for each time point and plotted
them in Figure 4B.

Analysis 3. The analysis was similar to Analysis 2 except that we esti-
mated 	� (prior) and 	L (likelihood) separately for each sample-size
condition and plotted them in Figure 5A–C.

Multiple-comparison correction. In the time-series analysis, at each
time point, we estimated the � coefficient of a regressor of interest (e.g.,
	�) and computed its z-statistic. This effectively made each time point an
independent test, requiring correction for multiple comparisons. We
determined the corrected z threshold based on the following two consid-
erations. First, we were only interested in testing the time points that

reflected BOLD signals in response to symbol-lottery presentation. Sec-
ond, we allowed for the possibility that certain computations might take
place during the delay period (the fixation period after symbol-lottery
presentation and before the presentation of the alternative lottery). These
considerations led us to test the time points between 4 and 12 s after
stimulus onset based on the hemodynamic delay (4 – 6 s after stimulus
onset) and the total duration of the symbol lottery and the delay period (7
s on average). Given that the TR was 2 s, there were a total of 5 time points
and thus 5 tests to be corrected for. Therefore, we used the z value that
corresponds to the p-value of 0.01 � 0.05/5, which is 2.33, as the thresh-
old. The dashed line in the relevant figures represents the corrected z
threshold.

Results
Behavioral results: learning prior distributions
Subjects provided trial-by-trial estimates of the probability of
reward associated with the two icons, each representing a prior
probability density function on reward probability. Their esti-
mates are plotted as histograms in Figure 2A. For both distribu-
tions, the mean estimate across subjects did not differ
significantly from the mean of the distribution (p � 0.05, one-
sample t test), indicating that subjects acquired accurate knowl-
edge about the probability of reward associated with these two
different stimuli.

Behavioral results: integrating prior and likelihood
To address how subjects used information about prior and like-
lihood in the fMRI session (see “Session 2: Integrating prior and
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L (	� � 
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likelihood”), we performed three sets of complementary behav-
ioral analyses using subjects’ choice data. We summarize the re-
sults below.

Analysis 1: logistic regression on choice and model comparisons
We evaluated three models and compared how well these models
described choice data. The three models were the posterior
model, the prior model, and the likelihood model (see Materials
and Methods for details). For each model, we summed the BIC
over all subjects and plotted it in Figure 2B. Here, we observe that
the posterior model had the smallest BIC value, indicating that
this model described choice data better than the other two mod-
els at the aggregate level. We then performed three pairwise
model comparisons each using a sign test based on the BIC (see
“Behavioral analysis 1: logistic regression analysis on choice and
model comparisons” for details). The results are summarized in
Table 1. We found that the posterior model described the choice
data better than either the likelihood model (p � 0.001) or the
prior model (p � 0.001). This is the first evidence in this dataset
indicating that, instead of using either prior or likelihood infor-
mation alone, subjects used the posterior information about the
symbol lottery, the product of prior and likelihood information,
when making decisions. In addition, we also found that the prior
model was better than the likelihood model (p � 0.025).

Analysis 2: logistic regression on choice and the use of prior and
likelihood information
Once we obtained the initial results supporting Bayesian integra-
tion, we further examined the use of prior and likelihood infor-
mation using logistic regression analysis. We modeled the choice
data by including the regressors on (1) prior (	�, the mean of the
prior distribution on reward probability associated with the sym-
bol lottery), (2) the likelihood (	L, the mean of the likelihood
function on reward probability associated with the symbol lot-
tery), (3) the likelihood uncertainty (
L, the SD of the likelihood
function on reward probability associated with the symbol lot-
tery), (4) the interaction between 	� and 
L (	� � 
L), (5) the
interaction between 	L and 
L (	L � 
L), and (6) the reward
probability of the alternative lottery �alt. We estimated the model
for each subject separately.

We removed one subject’s data because his/her parameter es-
timates were �3 SDs away from the group mean. Based on the
remaining 31 subjects, we then computed the mean of the param-
eter estimates (�). See Figure 2C for the � plots and Table 2 for
details on the estimation results. We found that the � estimate of
	� and 	L were both positive and significantly different from 0
(p � 0.0001). This suggests that both prior mean and likelihood
mean had a positive impact on the subjects choosing the symbol
lottery. The � of 
L was negative, suggesting that as likelihood
information became more uncertain, subjects tended to

choose the symbol lottery less often. The � of �alt was also
negative, suggesting that, as the reward probability of the al-
ternative lottery increased, subjects tended to choose the sym-
bol lottery less often.

The interaction terms, in particular their sign, could poten-
tially be used to test whether subjects performed Bayesian inte-
gration. If they do, then subjects should assign more weight to
likelihood information when likelihood uncertainty becomes
smaller (a negative effect of 	L �
L) but should weight prior infor-
mation more when likelihood uncertainty becomes greater (a posi-
tive effect of 	� � 
L). However, the � weights of both interaction
terms were positive but neither was significantly different from 0.

We were surprised that the � weights of both interaction
terms were not significantly different from 0. To explore further,
we simulated the ideal decision maker’s choices for the actual
trials that had been presented to each subject. See “Analysis 3:
ideal decision-maker analysis” in Materials and Methods for how
we simulated choice of an ideal decision maker.

Once we obtained the simulated choice data for all 32 subjects,
we then estimated the same logistic regression model described
above for each subject, obtaining 32 sets of parameter estimates.
We then computed the mean and SE of the parameter estimates
just as we had done in analyzing the actual data. We repeated the
above procedure 10,000 times.

We found that the estimated � weight of 	L � 
L was not
significantly different from 0 at the 0.05 level in 
97% of the
10,000 simulated experiments. For 	� � 
L, the estimated �
weight was not significantly different from 0 in 
50% of the
10,000 experiments.

We also found that, of 10,000 simulated experiments, 
2500
times the � of 	L � 
L was positive and the � of 	� � 
L was
negative, 3500 times the � of 	L � 
L was negative and the � of
	� � 
L was positive, 3700 times both terms were positive, and
300 times both were negative.

That is, even if all of our 32 subjects were ideal Bayesian decision-
makers, we would expect the pattern of results we found in actual
data (the � weights of both interaction terms being positive) about
37% of the time. We would expect the correct pattern of results (the
signs of the � weights of the interaction terms in agreement with
those of their population values) only 35% of the time. About half of
the time, we would expect neither interaction � weight to be signif-
icantly different from 0, the observed outcome. We conjecture that
one reason for the observed lack of power is that the correlation
between these two interaction terms was on average 0.86 in the ex-
periment each subject ran (150 trials) and hence in our simulations.
Including them in the same model would introduce a multicol-
linearity problem and lead to difficulty in estimating the sign of the �
weight of either interaction term. In summary, we cannot reject the
Bayesian integration hypothesis.

Given that learning of the prior occurred before the fMRI session
and that the subjects were not given further information that would

Table 1. Model comparison based on choice behavior

n nA p�x 
 nA⎪H0 is true�

A: Posterior model 32 26 0.001
B: Prior model
A: Posterior model 32 28 0.001
B: Likelihood model
A: Prior model 32 22 0.025
B: Likelihood model

Three model comparisons were made. For each comparison, we tested which model (A or B) is better based on
comparing the BIC of each individual subject between the two models. The results were coded as 1 when
model A was better and 0 when model B is better. A sign test was then carried out. n, Number of subjects; nA ,
number of subjects in whom model A was better than model B; the binomial random variable;
H0 : p(A is better) � p(B is better) � 0.5.

Table 2. Logistic regression analysis on choice behavior

beta SEM p-value

	� 6.08 1.15 �0.0001
	L 5.17 0.99 �0.0001

L �5.98 2.34 0.0008
�alt �12.78 1.33 �0.0001
	L � 
L 5.40 4.34 0.11
	� � 
L 2.52 3.75 0.25

Each row represents the mean beta estimate across subjects, SEM, and the p-value (testing significance from 0 using
1-sample t test) of each regressor implemented in the regression model.

1798 • J. Neurosci., January 28, 2015 • 35(4):1792–1805 Ting et al. • Integrating Prior and Likelihood



allow him/her to update it, one wonders whether representation of
the prior became noisier over time. To address this question, we
analyzed the behavioral data by separating the first half of the fMRI
session and the second half of the session. We found no significant
difference between the first and second half of the session in the �
coefficient of prior information in terms of its mean (paired t
test, tdf�31 � 0.4582, p � 0.6288) and variance (F-ratio test,
Fdf1�31, df2�31 � 0.6357, p � 0.2129). This indicated that
there was no significant change in the representation and use
of prior information over time during the fMRI session.

Analysis 3: ideal decision maker analysis
In the current experiment, as we manipulated the sample size of
the likelihood information, 
L was systematically changed.
Bayesian integration predicts that as 
L increases, subjects should
rely more on prior information and less on likelihood informa-
tion. Hence, the weight assigned to prior relative to likelihood
information, termed the relative weight (RW), should increase.
Conversely, when sample size increases, RW should decrease,
indicating that subjects should rely more on likelihood informa-
tion. In this analysis, we seek to address two questions. First, how
might RW change in response to changes in sample size? How
would those changes compare with the changes an ideal decision
maker would make?

For each subject, we performed one logistic regression analysis
on choice behavior for each sample-size condition. We estimated
RW as the ratio of � estimate of prior (	�) to that of the likeli-
hood (	L). For each sample-size condition, an RW �2.5 SDs
away from the mean (across subjects) was identified as an outlier
and was removed from subsequent analysis. We detected one
outlier in each condition.

After outlier removal, for each condition, we computed the
mean of RW of the remaining 31 subjects and plotted it against
the ideal RW in Figure 2D (black). The mean RW was 2.14 when
the sample size was small (n � 3). When sample size was medium
(n � 15), the mean RW was 2.25, which was indistinguishable to
the mean RW when n � 3. When sample size was large (n � 75),
the mean RW was 0.18. This indicated that when sample size was
small, subjects typically assigned more weight to prior than to
likelihood information (RW � 1). As sample size became bigger,
the subjects started to assign more weight to likelihood than to
prior (RW � 1). The median of subjects’ RW was also plotted
against ideal for each condition (color coded in gray). The me-
dian RW was approximately the same as the mean RW when n �
3 and n � 75, but was different when n � 15.

Such difference was likely due to the asymmetry in the distri-
bution of RW. Because the distribution was likely to be non-
Gaussian, we used nonparametric bootstrap methods (Efron and
Tibshirani, 1993) to estimate the confidence interval of actual
mean RW under each sample-size condition. That is, for each
sample-size condition, we first resampled with replacement from
the actual RW obtained from the subjects (n � 31 in all 3 condi-
tions) and computed the mean of the RW based on the resampled
dataset. We then repeated this procedure for 10,000 times. As a
result, we obtained a distribution of the mean actual RW, which
we used to construct the 95% confidence interval. If the ideal RW
were inside the confidence interval, we would conclude that sub-
jects’ mean RW was indistinguishable from the ideal RW. Other-
wise, we would conclude that subjects significantly deviated from
ideal. For n � 3, the 95% confidence interval CI of the actual
mean RW was [0.37 4.02] (the ideal RW � 3.45). For n � 15, the
95% CI of the actual mean RW was [0.24 4.73] (the ideal RW �
0.66). For n � 75, the 95% CI of the actual mean RW was [�0.31

0.66] (the ideal RW � 0.12). In all three conditions, the ideal RW
fell within the CI of actual RW. Therefore, we concluded that the
actual RW was statistically indistinguishable from the ideal RW
predicted by Bayesian integration.

Summary of behavioral results
In three separate analyses, we found that subjects integrated in-
formation about prior and likelihood in a fashion that was statis-
tically indistinguishable from the ideal Bayesian integration. The
first analysis demonstrated that a model based on using the pos-
terior information about reward probability (influenced by both
prior and likelihood information) better described the choice
data than either the prior or the likelihood information alone.
The second analysis further revealed that the subjects considered
the mean of prior distribution the mean and the SD of the likeli-
hood information when making decisions. Finally, the third anal-
ysis quantitatively revealed that the relative weight subjects
assigned to prior and likelihood changed in response to changes
in sample size and that the relative weights were statistically in-
distinguishable from an ideal decision maker that optimally in-
tegrates prior and likelihood information.

Neural correlates of the posterior distribution
In this study, the posterior distribution is the posterior probabil-
ity density function on the probability of reward associated with
the symbol lottery. The posterior distribution reflects the integra-
tion of prior knowledge and current sensory information in the
form of the likelihood function. We first looked at regions in the
brain for which activity correlated with information about the pos-
terior distribution. In particular, we looked for regions that corre-
lated with the mean of the distribution.

We found that the mPFC correlated with the mean of the
posterior distribution (	��; GLM-1; see Figure 3A). The maxi-
mum z-statistic � 3.95 at voxel coordinates [x, y, z] � [4, 48, 2]
(MNI space). The results were corrected for multiple compari-
sons (z � 3, familywise error-corrected p � 0.05 using Gaussian
random field theory). At this threshold, the mPFC was the only
region that correlated with 	��. To understand how mPFC rep-
resents 	�� under different sample-size conditions, we con-
structed independent ROIs in mPFC based on the 	�� contrast
and estimated the time series of effect size associated with 	��

under different sample-size conditions (see Materials and Meth-
ods: “Analysis 1, Time-series analysis). The results are plotted in
Figure 3B. The inset shows a summary of the mPFC ROI used in
this analysis. Because of the method used (see Materials and
Methods: “Construction of independent, unbiased region of in-
terest”), each subject had a different mPFC mask that varied
slightly in location. To get a general summary of the location of
the mPFC ROIs, we added the ROI used for each subject before
binarizing the summed mask. The mPFC ROI shown in yellow
thus depicts the voxels that were from at least one subject’s ROI.
The black thick line in the figure indicated the time points we
were interested in (4 –12 s after stimulus onset).

Looking at the time-series results, we first observed similar
dynamics across all three conditions. The effect size of 	��, indi-
cated by its z-statistic, was smallest at 4 s and gradually increased
before reaching its peak. In both n � 3 and n � 15 conditions, the
effect size of 	�� peaked at 6 – 8 s after the onset of the symbol
lottery and was significant (p � 0.05, corrected for the number of
time points tested). Conversely, when sample size was the largest
(n � 75), no time point between 4 and 12 s after stimulus onset
was significantly correlated with 	��. Although the result was not
significant, it still carried some useful information. The peak was
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10 s after the stimulus onset. Compared with peaks in the other
two conditions, this indicated that the posterior computation in
the large sample-size trials might take more time to perform,
possibly reflecting the visual processing associated with more
dots shown on the screen.

The posterior distribution is the result of the integration of
prior knowledge and likelihood information (Eq. 4). The anal-
ysis just described showed regions that correlate with informa-
tion about the posterior distribution, the result of such
integration. In the following analysis, we looked for regions
that correlate with information about prior distribution and
likelihood function.

Neural correlates of the prior distribution and likelihood function
Using a GLM that separately modeled prior distribution and like-
lihood function (GLM-2), we found that regions in the mPFC
and the dorsal anterior cingulate cortex (dACC) correlated with
subjects’ prior knowledge about probability of reward when in-
formation about the symbol lottery was revealed. Activity in these
regions correlated with the mean of the prior distribution on
reward probability (	�) (z � 3, familywise error-corrected p �
0.05 using Gaussian random field theory). At this threshold,
the cluster including mPFC (maximum z-statistic � 3.68,
[x, y, z] � [10, 44, �4]) and dACC (maximum z-statistic � 4.03,
[x, y, z] � [�10, 44, 20]) was the only region that correlated with
	� (Fig. 4A). For the likelihood function, no region was signifi-

cantly correlated with 	L during the period in which the symbol
lottery was presented at the 0.05 level after correcting for multiple
comparisons using Gaussian random field theory with a cluster-
forming threshold z � 2.3.

Given that mPFC represented both the posterior and prior
information, we next focused on this region with more detailed
ROI analyses. Two ROI analyses were performed and both were
independent and unbiased. In the first analysis, we looked at the
representation of prior and likelihood information across all tri-
als (Fig. 4B). In the second analysis, we investigated how prior
and likelihood representations in mPFC might change under dif-
ferent sample-size conditions (Fig. 5). The mPFC ROIs used and
summarized on the inset in Figures 4B and 5 were the same as in
Figure 3B.

In the first analysis (see Materials and Methods: “Analysis 2,
Time-series analysis”), we found significant representations of
both prior and likelihood information in mPFC (p � 0.05, cor-
rected for the number of time points tested; Fig. 4B). Significant
prior representation was consistent with the results from the
whole-brain analysis. Significant likelihood representation, how-
ever, was not consistent with whole-brain results. We found that,
in contrast to an earlier plateau of prior information coding (6 – 8
s after stimulus onset), the representation of likelihood informa-
tion had a later peak (
10 s after stimulus onset). Recall that
information about the symbol lottery was presented for 3 s before
entering the delay period (Fig. 1D). Given a typical hemodynamic
lag of 6 s, this result indicated that likelihood coding in mPFC
might not take place when information about the symbol lottery
was revealed. Instead, it took place after that, during the delay
period. This could explain why we did not find significant repre-
sentation of likelihood in the whole-brain analysis because the
GLM attempted to capture likelihood representation during
symbol-lottery presentation.

Another distinct pattern that we observed from the ROI anal-
ysis is the ordering in information coding in mPFC. Despite the
fact that we revealed information about prior (the icon) and like-
lihood (the dots) simultaneously, BOLD signals in mPFC indi-
cated that prior information was coded first (as it had an earlier
peak) and was only later by the coding of likelihood information.
This temporal ordering may simply be due to the experimental
design. First, likelihood information was presented in the form of
dots, whereas prior information was represented by a symbol
icon. It is plausible that the amount of time required to process
these two sources of information was simply different. Second,
familiarity might also contribute. Subjects should be relatively
more familiar with the symbol icons because of the prior learning
session that took place before the fMRI session.

In the second independent ROI analysis (see Materials and
Methods: “Analysis 3, Time-series analysis”), we analyzed prior
and likelihood coding for each sample-size condition separately.
The results are shown in Figure 5. First, we noticed very similar
patterns for n � 3 and n � 15. In both conditions, prior coding
dominated the mPFC signals 6 – 8 s after stimulus onset. This is
consistent with the previous analyses showing that mPFC repre-
sented prior information when symbol lottery was presented.
Conversely, likelihood representation was not significant be-
tween 4 and 12 s after stimulus onset. Even though the results
were not significant, we observed that, in both cases, likelihood
coding peaked at 10 s after stimulus onset.

In contrast to significant prior coding but nonsignificant like-
lihood coding, we observed the opposite pattern when sample
size was large (n � 75). Likelihood representation rose and
peaked at 12 s after stimulus onset. At this point, it was marginally
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significant (p � 0.014). Conversely, prior representation
changed little from 4 –12 s after stimulus onset and was not sig-
nificant at all the time points tested during this period.

These results together were qualitatively consistent with the
behavioral data. In the logistic regression analysis on choice we
performed, we found that subjects weighted prior information
more than likelihood information when n � 3 and n � 15. Recall
that RW is the ratio of the estimated � coefficient of prior infor-
mation (	�) to that of likelihood (	L). We found that the mean
RW across subjects was identical between the two conditions
(RW � 2.25 when n � 3, RW � 2.14 when n � 15). This is
consistent with the neural findings that prior information coding
dominated over likelihood coding in mPFC activity in both of these
conditions (Fig. 5A,B). In contrast, when sample size was large (n �
75), RW inferred from choice behavior suggested that subjects
weighed likelihood information more than prior information
(RW � 0.18). This is consistent with the results showing marginally
significant likelihood coding, but nonsignificant prior coding in
mPFC (Fig. 5C).

Based on these observations, we next attempted to define RW
quantitatively at the neural level based on the results of the time-
series analysis. To quantitatively estimate the neural RW, we did
the following exploratory analysis. For each sample-size condi-
tion, we identified the maximum z-statistic during the time
points of interest (4 –12 s after stimulus onset) separately for 	�

and 	L. The maximum z-statistic reflected the highest correlation
with the variables of interest during this period. Let z�

max denote
the maximum z-statistic of 	� and zL

max denote the maximum
z-statistic for 	L. We defined the neural measure of RW by
z�

max/zL
max.

We plot the behaviorally estimated RW against the neural RW
in Figure 5D. The behavioral RW associated with each sample-
size condition plotted here was identical to that shown in Figure
2D (the “actual RW” plotted on the y-axis). Based on the 95%
confidence interval of the behavioral RW (see Results: “Analysis
3: Ideal decision maker analysis”), the behavioral RW was statis-
tically indistinguishable from the neural RW.

Neural correlates of likelihood uncertainty
We defined likelihood uncertainty by the
SD of the likelihood function 
L, which
reflects how “trustworthy” information
about the likelihood of reward is in the
data. In the behavioral analysis, we found
that likelihood uncertainty correlated
with choice: subjects were less likely to
choose the symbol lottery when 
L be-
came greater. Whole-brain GLM
(GLM-3) indicated that BOLD response
in a distributed network of regions in-
cluding the occipital cortex and the
striatum negatively correlated with 
L

(Fig. 6, in yellow) (z � 2.6, familywise
error-corrected p � 0.05 using Gaussian
random field theory). See Table 3 for a
complete list of regions that were nega-
tively correlated with 
L.

This outcome indicated that activity in
these regions increased when likelihood
uncertainty decreased. There was no re-
gion that positively correlated with likeli-
hood uncertainty. The sign of correlation
was consistent the results of logistic re-
gression on choice, which showed that the
likelihood uncertainty negatively corre-

lated with the probability of choosing the symbol lottery.
One potential concern for the fMRI results on likelihood un-

certainty is its correlation with sample size, which is the number
of dots shown on the screen. Given that likelihood uncertainty
negatively correlates with sample size, activity correlated with
likelihood uncertainty can be driven simply by sample size. To
address this concern, we included a separate regressor for sample
size in the GLM (see Materials and Methods: “GLM-2” and
“GLM-3” for regressor descriptions). We found that, even when
sample size was added as a parametric regressor, the regions re-
ported above that correlated with likelihood uncertainty were
still activated. This indicated that activity in these regions corre-
lated with likelihood uncertainty and cannot simply be explained
by the number of dots presented in the trial.

For the interaction between 
L and 	L (	L � 
L, GLM-3), we
found that the occipital cortex significantly and positively corre-
lated with it (Fig. 6, in blue) (z � 2.6, familywise error-corrected
p � 0.05 using Gaussian random field theory). No negative cor-
relation was found at the whole-brain level. For the interaction
between 
L and 	� (	� � 
L, GLM-3), we found that BOLD
response in the ventral striatum positively correlated with it (Fig.
6, in green; z � 2.6, familywise error-corrected p � 0.05 using
Gaussian random field theory).

Although we did not find behaviorally that these two interac-
tion terms were significant (see Results: “Analysis 2: Logistic re-
gression on choice and the use of prior and likelihood
information”), the significant correlation between BOLD re-
sponse in these regions and the interaction terms provided evi-
dence for the neural systems, in addition to mPFC, that may be
involved in the integration process.

Discussion
We investigated how the brain represents prior knowledge and
likelihood based on current sensory information and how these
two sources of information are integrated. To study prior-
likelihood integration, we designed a novel lottery decision task.
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We systematically manipulated prior
knowledge in the form of a probability
density function on reward probability;
we systematically manipulated current
sensory information in the form of a like-
lihood function by varying the size of the
sample of the sensory data on reward
probability. We compared subjects’
choice behavior to the predictions of
Bayesian decision theory.

Integration of prior and
likelihood information
We found that subjects flexibly adjust the
weights assigned to prior and likelihood
information. When likelihood informa-
tion was less reliable because it was based
on a smaller sample size, subjects tended
to weight prior information more heavily
than likelihood and vice versa. The weights
subjects assigned to these two sources of in-
formation were statistically indistinguish-
able from the predictions based on Bayesian
decision theory (Fig. 2D).

The relative weight given to prior and
likelihood information had received a
great deal of attention in various disci-
plines. This is a key issue in judgment
under uncertainty and the subject of ex-
tensive research in psychology (Kahne-
man et al., 1982; Gigerenzer and Hoffrage,
1995; Zhang and Maloney, 2012), in ex-
perimental economics and finance (Cam-
erer, 1987; Friedman, 1998; Kluger and
Wyatt, 2004; Slembeck and Tyran, 2004;
Kluger and Friedman, 2010), and in hu-
man perception and action (Geisler, 1989;
Knill and Richards, 1996; Körding and
Wolpert, 2006; Trommershäuser et al.,
2008; Zhang and Maloney, 2012; Pouget
et al., 2013). One key issue in this litera-
ture is to understand how humans select
weightsforthesedifferentsourcesofinformation.Thesecondissuecon-
cerns how actual performance might deviate from that predicted by an
ideal observer or decision maker that optimally integrates prior and
likelihood information. For example, it has been shown that, in many
cognitive judgment tasks, subjects are suboptimal in that they tend to
assign more weights to current information (likelihood) than they
should, that is, the base-rate fallacy (Kahneman et al., 1982).

Other studies, such as in multisensory integration and motor
decision making, revealed that humans integrate prior and like-
lihood information nearly optimally (Ernst and Banks, 2002;
Körding and Wolpert, 2004; Tassinari et al., 2006). What we
added to the existing literature is that, in the domain of reward
probability, human subjects flexibly adjust the weights assigned
to likelihood and prior information and their adjustments are con-
sistent with the predictions based on Bayesian decision theory.

Neural representations of prior, likelihood, and
posterior information
There is a growing interest in decision neuroscience in studying
the effect of prior expectation on behavioral performance and the
underlying neural mechanisms, ranging from perceptual deci-

sion making (Forstmann et al., 2010; Rahnev et al., 2011; Mulder
et al., 2012; Kok et al., 2013), reinforcement learning (Li et al.,
2011), belief updating in financial decision making in the pres-
ence of social information (Huber et al., 2014), and in trust games
(Fouragnan et al., 2013). Prior expectations in most studies were
manipulated by varying the reliability of cues that predicts the up-
coming stimulus (Forstmann et al., 2010; Li et al., 2011; Rahnev et al.,
2011; Mulder et al., 2012; Kok et al., 2013) or simply the presence or
absence of prior information (Fouragnan et al., 2013).

In perceptual decision making, the reliability of prior infor-
mation is represented in a frontoparietal network (Rahnev et al.,
2011; Mulder et al., 2012) that modulates the effective connectiv-
ity between sensory systems and the dorsolateral prefrontal cor-
tex (DLPFC) (Rahnev et al., 2011) and affects the sensory
representations in the visual cortex in a way that is consistent with
prior-induced perceptual bias (Kok et al., 2013). In a financial
decision task, Huber et al., (2014) found that frontoparietal re-
gions including the inferior parietal cortex and the DLPFC update
beliefs about option value in the presence of social information. To
summarize, a growing body of work has begun to reveal the neural
systems involved in representing prior expectations and the compu-
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tational mechanisms for how prior information affects decision
computations.

Our study adds to this literature by revealing the neural mech-
anisms underlying the integration of prior and likelihood infor-
mation in the computation of reward probability. First, we found
that the mPFC represented the posterior information (the mean of
the posterior distribution on reward probability; Fig. 3). Because
such information is a result of the integration of prior and likeli-
hood information, this finding indicated that mPFC is a candi-
date region for performing such integration. Second, in a separate
analysis, we found that mPFC represented both prior and likelihood
information (Fig. 4). Third, we found that there was a close match
between subjects’ behavior and mPFC signals while likelihood and
prior information were being evaluated (Fig. 5). The neural measure
of relative weight (the weight assigned to prior information relative
to the likelihood information) was statistically indistinguishable
from the behavioral measure of relative weight (Fig. 5D).

The mPFC and the orbitofrontal cortex had also been shown
to be involved in valuation during value-based decision making
(Wallis and Miller, 2003; Padoa-Schioppa and Assad, 2006; Kable
and Glimcher, 2007; Plassmann et al., 2007; Tom et al., 2007;
Chib et al., 2009; for reviews, see Kable and Glimcher, 2009,
Padoa-Schioppa, 2011; Wallis and Kennerley, 2010; Levy and
Glimcher, 2011; Wu et al., 2011; for meta analysis, see Clithero
and Rangel, 2013).

Despite the notion that valuation and
the integration of prior and current infor-
mation are intimately related, it remained
an open question as to whether these two
computations are performed by the same
neural system. What we showed is that, at
least in the domain of reward probability,
the previously identified canonical valua-
tion network is also engaged in integrating
prior knowledge and current sensory infor-
mation to estimate reward probability.

In a recent study, d’Acremont et al.
(2013) investigated the neural mecha-
nisms for the integration of prior and
likelihood information in the computa-
tion of event probability. In two differ-
ent tasks, subjects had to estimate the
probability of occurrence associated
with two complementary events to ob-
tain monetary rewards. Both prior and
likelihood information were systemati-
cally manipulated.

They found that a distributed fronto-
parietal network including the mPFC en-

coding likelihood information (event frequency) independent of
prior knowledge, whereas a separate and distinct network includ-
ing the inferior frontal gyrus represented the Bayesian posterior
probability (the integration of prior and likelihood information).

Our results are consistent with d’Acremont et al. (2013) con-
cerning likelihood coding in mPFC. Although the present study
highlighted the role of mPFC in integrating prior and likelihood
information, the d’Acremont et al. (2013) study revealed separate
systems for encoding likelihood and posterior information.
These differences in findings likely reflect differences in the vari-
able of interest and in task design.

First, in the d’Acremont et al. (2013) study, the variable of
interest was event probability, whereas we were interested in re-
ward probability. Second, although subjects had to accumulate
samples sequentially to compute likelihood and thus the poste-
rior information in d’Acremont et al. (2013), likelihood informa-
tion was not revealed sequentially in the present study. This could
in principle explain why a distributed frontoparietal network,
which had been shown to be critical to evidence accumulation
(Heekeren et al., 2004; Heekeren et al., 2006; Kahnt et al., 2011;
Liu and Pleskac, 2011; Filimon et al., 2013; Hebart et al., 2014),
was involved in encoding and updating event frequency in the
d’Acremont et al. (2013) study but not in our study. Finally, there
were differences in how subjects acquired prior information in
the two studies. Subjects in the present study established prior
knowledge through an extensive learning session before the fMRI
session, whereas prior information in d’Acremont et al. (2013)
was explicitly revealed in graphical form on a trial-by-trial basis.
Together, these differences could subsequently affect the neural
systems involved in the integration of prior and likelihood infor-
mation. Future investigations with an equivalent task design are
therefore needed to further interpret the differences in findings.

Neural representations of likelihood uncertainty
Our neural results on likelihood uncertainty were in part consis-
tent with a recent study (Vilares et al., 2012) that also found
evidence for the representation of likelihood uncertainty in the
occipital cortex. What we found is that, in addition to the occip-
ital cortex, the precuneus, inferior parietal cortex, frontal pole,
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μ σL L×

occipital cortex
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Figure 6. Neural correlates of likelihood uncertainty. Whole-brain results (z � 2.6, familywise error-corrected p � 0.05 using
Gaussian random field theory) showing regions that significantly correlated with likelihood uncertainty (
L, in yellow), the
interaction between likelihood uncertainty and the mean of the likelihood function (	L, frequency of reward indicated in the
current sensory information), 	L � 
L (in blue), and the interaction between 
L and the mean of the prior distribution (	�),
	� � 
L (in green). The occipital cortex correlated with both 
L and 	L � 
L. The ventral striatum correlated with both 
L

and 	� � 
L.

Table 3. Regions in which the BOLD signal was negatively correlated with the SD of
the likelihood function (likelihood uncertainty)

Cluster Hemisphere Cluster size z-max z-max (x, y, z)

Occipital cortex L 6550 5.67 (�14, �98, 0)
Striatum L 3639 4.39 (�8, 4, �8)
Inferior parietal lobule R 1395 4.28 (54, �24, 38)
Inferior parietal lobule L 917 3.87 (�46, �32, 34)
Precuneous L 897 3.61 (�12, �66, 54)
Frontal pole L 583 3.69 (�32, 50, 8)
Posterior cingulate cortex 450 3.76 (0, �24, 32)
Superior frontal gyrus L 371 3.71 (�28, �4, 62)

Clusters that survived cluster-based correction (z � 2.6, familywise error-corrected p � 0.05 using Gaussian ran-
dom field theory). The z-max column represents the MNI coordinates of the maximum z-statistic.
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and striatum are also involved in representing likelihood uncer-
tainty. Furthermore, we also found that the occipital cortex cor-
related with the interaction between likelihood uncertainty and
information about the frequency of reward in the likelihood
function and that the ventral striatum correlated with the inter-
action between prior knowledge and likelihood uncertainty. To-
gether, these results suggest that, in addition to mPFC, these
regions may also participate in the integration process. Future
studies are needed to better understand the exact computation
roles of these regions on prior-likelihood integration. For exam-
ple, it is possible that the involvement of the occipital cortex was
driven by how we presented the likelihood information. It remains
to be seen whether the same regions would encode these variables
when one replaces the current way of presentation (showing colored
dots) with other forms (e.g., showing numbers).
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